Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 226(15)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37493039

RESUMO

The gill surface area of aquatic ectotherms is thought to be closely linked to the ontogenetic scaling of metabolic rate, a relationship that is often used to explain and predict ecological patterns across species. However, there are surprisingly few within-species tests of whether metabolic rate and gill area scale similarly. We examined the relationship between oxygen supply (gill area) and demand (metabolic rate) by making paired estimates of gill area with resting and maximum metabolic rates across ontogeny in the relatively inactive California horn shark, Heterodontus francisci. We found that the allometric slope of resting metabolic rate was 0.966±0.058 (±95% CI), whereas that of maximum metabolic rate was somewhat steeper (1.073±0.040). We also discovered that the scaling of gill area shifted with ontogeny: the allometric slope of gill area was shallower in individuals <0.203 kg in body mass (0.564±0.261), but increased to 1.012±0.113 later in life. This appears to reflect changes in demand for gill-oxygen uptake during egg case development and immediately post hatch, whereas for most of ontogeny, gill area scales in between that of resting and maximum metabolic rate. These relationships differ from predictions of the gill oxygen limitation theory, which argues that the allometric scaling of gill area constrains metabolic processes. Thus, for the California horn shark, metabolic rate does not appear limited by theoretical surface-area-to-volume ratio constraints of gill area. These results highlight the importance of data from paired and size-matched individuals when comparing physiological scaling relationships.


Assuntos
Metabolismo Basal , Tubarões , Animais , Tubarões/metabolismo , Oxigênio/metabolismo , California
2.
J Fish Biol ; 102(4): 829-843, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36625095

RESUMO

Laboratory-based studies examining fish physiological and behavioural responses to temperature can provide important insight into species-specific habitat preferences and utilisation, and are especially useful in examining vulnerable life stages that are difficult to study in the wild. This study couples shuttle box behavioural experiments with respirometry trials to determine the temperature preferences and metabolic thermal sensitivity of juvenile California horn shark (Heterodontus francisci) and leopard shark (Triakis semifasciata). As juveniles, these two species often occupy similar estuarine habitats but display contrasting behaviours and activity levels - H. francisci are relatively sedentary, whereas T. semifasciata are more active and mobile. This study shows that juvenile H. francisci and T. semifasciata have comparable thermal preferences and occupy similar temperature ranges, but H. francisci metabolism is more sensitive to acute changes in temperature as expressed through a higher Q10 (H. francisci = 2.58; T. semifasciata = 1.97; temperature range: 12-24°C). Underlying chronic temperature acclimation to both warm (21°C) and cool (15°C) representative seasonal temperatures did not appear to significantly affect these parameters. These results are discussed in the context of field studies examining known distributions, habitat and movement patterns of H. francisci and T. semifasciata to better understand the role of temperature in species-specific behaviour. Juvenile H. francisci likely target thermally stable environments, such as estuaries that are close to their preferred temperature, whereas juvenile T. semifasciata metabolism and behaviour appear less dependent on temperature.


Assuntos
Temperatura Baixa , Tubarões , Animais , Temperatura , Peixes , Tubarões/fisiologia , California
3.
Ecol Evol ; 11(15): 9987-10003, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34367554

RESUMO

Advances in experimental design and equipment have simplified the collection of maximum metabolic rate (MMR) data for a more diverse array of water-breathing animals. However, little attention has been given to the consequences of analytical choices in the estimation of MMR. Using different analytical methods can reduce the comparability of MMR estimates across species and studies and has consequences for the burgeoning number of macroecological meta-analyses using metabolic rate data. Two key analytical choices that require standardization are the time interval, or regression window width, over which MMR is estimated, and the method used to locate that regression window within the raw oxygen depletion trace. Here, we consider the effect of both choices by estimating MMR for two shark and two salmonid species of different activity levels using multiple regression window widths and three analytical methods: rolling regression, sequential regression, and segmented regression. Shorter regression windows yielded higher metabolic rate estimates, with a risk that the shortest windows (<1-min) reflect more system noise than MMR signal. Rolling regression was the best candidate model and produced the highest MMR estimates. Sequential regression models consistently produced lower relative estimates than rolling regression models, while the segmented regression model was unable to produce consistent MMR estimates across individuals. The time-point of the MMR regression window along the oxygen consumption trace varied considerably across individuals but not across models. We show that choice of analytical method, in addition to more widely understood experimental choices, profoundly affect the resultant estimates of MMR. We recommend that researchers (1) employ a rolling regression model with a reliable regression window tailored to their experimental system and (2) explicitly report their analytical methods, including publishing raw data and code.

4.
J Morphol ; 279(12): 1716-1724, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30427064

RESUMO

Fish gill surface area varies across species and with respect to ecological lifestyles. The majority of previous studies only qualitatively describe gill surface area in relation to ecology and focus primarily on teleosts. Here, we quantitatively examined the relationship of gill surface area with respect to specific ecological lifestyle traits in elasmobranchs, which offer an independent evaluation of observed patterns in teleosts. As gill surface area increases ontogenetically with body mass, examination of how gill surface area varies with ecological lifestyle traits must be assessed in the context of its allometry (scaling). Thus, we examined how the relationship of gill surface area and body mass across 11 shark species from the literature and one species for which we made measurements, the Gray Smoothhound Mustelus californicus, varied with three ecological lifestyle traits: activity level, habitat, and maximum body size. Relative gill surface area (gill surface area at a specified body mass; here we used 5,000g, termed the 'standardized intercept') ranged from 4,724.98 to 35,694.39 cm2 (mean and standard error: 17,796.65 ± 2,948.61 cm2 ) and varied across species and the ecological lifestyle traits examined. Specifically, larger-bodied, active, oceanic species had greater relative gill surface area than smaller-bodied, less active, coastal species. In contrast, the rate at which gill surface area scaled with body mass (slope) was generally consistent across species (0.85 ± 0.02) and did not differ statistically with activity level, habitat, or maximum body size. Our results suggest that ecology may influence relative gill surface area, rather than the rate at which gill surface area scales with body mass. Future comparisons of gill surface area and ecological lifestyle traits using the quantitative techniques applied in this study can provide further insight into patterns dictating the relationship between gill surface area, metabolism, and ecological lifestyle traits.


Assuntos
Fenômenos Ecológicos e Ambientais , Brânquias/anatomia & histologia , Tubarões/anatomia & histologia , Animais , Tamanho Corporal , Análise de Regressão , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...